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Abstract.

Recent POLAR observations indicate the presence of broadband plasma waves in

frequency range of z 101 Hz to about 104 Hz on magnetic field lines mapping into

polar cap boundary layer, at altitudes of about 6 to 8 RE (where RE is the Earth

radius). These waves are quite similar to the broadband plasma waves observed in the

low latitude boundary layer, and they appear to be a mixture of electromagnetic and

electrostatic modes. A linear theory for the generation of these waves is developed. The

theory is fully electromagnetic and takes into account the free energy available due to

the presence of field-aligned currents, and gradients in the currents, plasma densities

and magnetic fields. A generalized dispersion relation for the coupled lower hybrid,

whistler, and current convective modes” ‘is obtained. It is found that the presence of

density gradients, the current convective modes develop a finite real frequency, but

at the same time their growth rates are reduced. on the other hand, sharp density

gradients can lead to the excitation of a lower hybrid drift instability when the hot ions

are present in the boundary layer. In general the current convective and lower hybrid

drift modes are coupled, and the dispersion relation has to be solved numerically. The

inclusion of electromagnetic effects leads to the reduction of the growth rates.



1. Introduction

Recently, POLAR has detected broadband plasma waves in the frequency range

of * 101 Hz to about 104 Hz on similar magnetic field lines as the low latituc[e

boundary layer (LLBL) at altitudes of about 6 to 8 RE (where RE is the Earth radius)

[ Tsurutanz’ et al., 1998]. The waves appear to be a mixture of electromagnetic and

electrostatic modes. The region of wave activity bounds the dayside (05 to 18 LT)

polar cap fields, and thus these waves were called Polar Cap Boundary Layer (PCBL)

waves [Z’suwtani et al., 1998], There is a strong relationship between the presence

of ionospheric and magnetosheath ions and the intense PCBL waves near the noon

sector. These waves may, therefore, be responsible for ion heating/acceleration observed

near the cusp region. Earlier, the broadband plasma waves have been detected within

the Earth’s magnetopause low latitude boundary layer (LLBL) by several spacecraft,

like the ISEE1 and -2, GEOS, and AMPTE [Gurnett et al., 1979; Tsurtitani et al,,

1981; 1989; Anderson et al., 1982; Gendrin, 1983; Rezeau et al., 1989; Belmont et

al,, 1995; LaBelle and Treumann, 1988]. Similar waves have also been detected at

the Jovian (magnetopause) low latitude boundary layer [Tsumdani et al., 1993; 1997].

These boundary layer waves have been demonstrated to be sufficiently intense to cause

cross-field diffusion of magnetosheath plasma to form the boundary layer itself at both

Earth and Jupiter [ Tsurutani and Thorne, 1982; Tsurutani et al., 1997]. The cross-field

diffusion of particles, energy and momentum due to the broadband plasma waves would

be one form of viscous interaction between the solar wind and the magnetosphere

[Azford and Hines, 1961; Tsumdani and Gonzalez, 1995].

The generation mechanism of the PCBL as well as LLBL waves is not well

understood. The emissions are broadbanded with no obvious spectral peaks which could

be used to identify particular

LLBL waves are the electron

[A’ennel and Petschek, 1966],

plasma instabilities. Some suggested mechanisms for the

loss cone instability driven by velocity space gradients

the lower hybrid drift instability driven essentially by

—
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the density gradients [Gary and Eastman, 1979; Hu6a et al,, 1981], the velocity shear

and drift instabilities [Lakhina, 19s7;

and a magnetic shear instability [Zhu

instability [Drake et al., 1994a] and a

1995] driven unstable by the gradient

1993; Ganguli et ai., 1994; Lakhina et al., 1995],

et al., 1996]. An electrostatic current convective

whistler instability [Drake et al,, 1994b; Drake ,

of the field-aligned currents have been proposed.

However, the last two mechanisms employ cold plasma approximation, and they work

best for the thin magnetopause current layers .

In this paper we present a linear theory for the generation of broadband PCBL

plasma waves. The theory is fully electromagnetic and takes into account the free energy

available due to the presence of field-aligned currents, and gradients in the currents,

plasma densities and magnetic fields. The dispersion relation generalizes the dispersion

relations for the lower hybrid and current convective instabilities. In general the current

convective and lower hybrid drift modes are coupled, and the dispersion relation has to

be solved numerically.

2.

and

The Model

Let us consider the PCBL wave region to be characterized by nonuniform plasma

magnet ic field. In the equilibrium state, there is a finite field-aligned current.

For simplicity, we consider the currents to be carried by electrons streaming with

a nonuniform velocity VO(Z) relative to ions. This field-aligned currents makes the

magnetic field nonuniform. The equilibrium magnetic field varies along z-direction,

the direction of inhomogeneity, and is directed along the z axis, i.e., B. = Be(x) z.

In the equilibrium state, the electron and ion densities are taken to be equal, i.e.,

nO~(.Z!)= ?ZOi(X)= no(z) to maintain the charge neutrality. We consider the waves

propagating obliquely to the ambient magnetic field in the y-z plane, i.e., the wave

vector, k, can be written as k = k: z + kv y. We shall consider the frequency range

~~~ << ~z << ‘~~ , where ~Ci(~*C~) is the ion (electron) cyclotron frequency. Under
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this assumption ion response to the perturbation can be treated as unmagnetizecl.

Electrons are treated as magnetized and their response to perturbation is taken as fully

electromagnetic.

The dynamics of the plasma is governed by two fluid equations. For electron

dynamics is described by the continuity and parallel momentum equations,

(1)

where

is the perpendicular

(1/130)E x z, v& =

are, respectively, the

VLe * VE ~ Vde f vpe~ (3)

components of the electron fluid velocity, v~. Here VE =

-(~~/LJ+.)z x vln n., Vp. = (1/~ou..)(aEJYat + V. “ VE~)

E x B drift, the density gradient drift and the polarization drift.

Further, w.. = (e 130/m.) is the electron cyclotron frequency, n. is the electron number

density, m. is the electron mass, T. is the electron temperature, v. = (T./m,) 1/2 is the

electron thermal velocity, and EL is the perpendicular (to 130z) component of the wave

electric field vector, and B = B. + B1 is the total magnetic field, with B1 being the

wave magnetic field, The ion dynamics is governed by

. hi d(?Z;Vx{) = ~ ~
~ + V~ “ (71iVJ-i) + ~z 9 (4)

8Vi V2
~+ Vi. VVi=–~E–*Vni, (.5)

ni

where the i subscript denote the corresponding ion quantities.

Equations (1) to (5) along with the Maxwell’s equations,

i3B
—=–VXE,
at

8E
V x B = poJ +poco=,

(6)

(7)



and

V*E=
e(ni —n~)

;VOB=O,
@

(8)

where J is the current density, form a basic set of equations on which the linear stability

analysis would be performed. We write a quantity g = go + gl, where gl (<< go) is

the perturbation, and take the perturbations in all the quantities to be of the form

gl z gl exp[ik. z + iky y – iw t]. The dispersion relation is obtained from the linearized

set of equations (1) to (8) under the local approximation which assumes the wave

wavelengths to be much shorter than the inhomogeneity (e.g. in density, magnetic field,

or velocity) scale length.

3. The

From

Dispersion Relation

the linearized form of (2), (4) and (5), we get,

“[ dVo + eEz . ~ Blz

1“z’ = (w --;ZVO)‘“x z + ‘kz~~N1e+ ~’”nx ‘

Nli =
iek” E
‘m;ff ‘

[

eE——
‘li = (u – ;J40) ?n~ 1

ikVt~iV1i ,

where f?= [(w - kvtjo)’ - k’~~].

(9)

(lo)

(11)

In the abov~ equations, Nlj = nlj/no is the normalized density perturbations of the

jth fluid, K. = dln no/dz is the inverse of equilibrium density gradient, KB = dln Bo/dx

is the inverse of the ambient magnetic field gradient. Further, we have taken into

account the cross-field ion drift relative to the electrons, V~o,which can arise due to the

density gradients, or due to some other processes. For the case of density gradients, the

relative cross-field drift velocity is simply given by Vdo = [Kn~~(l + T“/Z’i)/~ci] y. Here,

~Cj represents the cyclotron frequency of the jth species ( with j = e for the electrons

and j = i for the ions). On substituting for V1l. and Ul:. from (3) and (9), respectively,



in linearized form of (l), we get

Nle =
i(k) - kztfj)

[

~v(Kn – KB) + E,k, (u – kzvo +

f: - Bo Bow..

+
iE=(2K~ —/cn)((.d—kzvo)

Bow.. {

(

+dvo ~ + iE.(w – k~Vo)
~ B. BOWC, r:;}z$l ’12)

where ~~ = [(w - kZw)2 - k~~~(l + &$$)].

On taking the curl of (7) and then considering the z component of the resulting

equation, we get

BIZ W:e k w&

[( )

w–kZVo ~+

~ = c2k2wC. v W – kvV~o – w&?

+ik~(’+m+ikz:w%t
(13)

where
k:~:

F~ = –—
+ dvdo

z’
(14)

Wce

and wP~ = (noe2/com.)1i2 is the electron plasma frequency, and c = (poeo)-lf2 is the

speed of light. In deriving (13), we have taken W2 << c2k2. On substituting for Nli

from (10), Nl, from (12), BIZ from linearized form of (6), and BIZ from (13) into the

linearized version of the Poisson’s equation (8), we get

allEZ + a12Ey+ ad.L = L

where

iw~~(w – kzVo)

[

k dVo w’

(

W& L* – k. V.
all =

‘z
+kUw@ w_kv~o–

W:ej: v Wce )1

(15)

(16)
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On taking the z component of (7), and making use of (9)-(12), we can obtain an

expression for (k x Bl)z, Equating this with the (k x B1)Z obtained by taking a curl of

(6) and then considering the z component, we arrive at,

a21EZ+ a22EV+ a23E. = 0, (17)

where

2
‘pe

[

i du (OJ– k.14J) iw(2/c~ – K.)
azl = —— —— —

~2 W:e dx {

—
f; ~:e

ikZ dVo

}{

kv~: dV( k=~:——— .
W:e dx (w – kZ~)wCe ~ ‘(w-kzVJ+W }1

[

kzky w~e me kzkv~: 1

(

1 dVo kztcn~:
azz = ——— — —— —

(A) ~2 ~+
m; (U – kvV~o)fl - (W – kZVo) WC. dz Wwce )-

(18)

Considering the z component of (6), we get

~Iz = &%_—-z- (19)
WBO “

On equating right hand sides of (13) and (19), we arrive at,

a31EZ+ a32EV+ a33EZ= U (20)

where

‘(1+%9c2k2uCe

ik: F1tiCi 2
Wpe

f: “czkzwce



Combining (15), (17), and (20), we get the dispersion relation,

all(a22a33 — a32a23) — a12(a21a33 _ ~23a31) + ~13(a21a32 _ ~2za31) = 0 (’22)

After a considerable algebra, and neglecting the terms * m~/mi, (22) can be simplified

to,

=H%%+*(*-”;:”Q)—W$:y;w;:;,vo)*

{
2

1+*
( )} ‘1“‘“*-w-i&’Q –

-- “ ,+ *W:C
(’+%9

{ )} [ {
J ldVokL l—~+

(
“ ~ WC. dx ku

c +-”::v~ f,

3.1. Special Case: Electrostatic Modes

Under the limit of R s w~,/c2k2 -+ O, (23) is greatly simplified to,

(23)
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3.1.1. Current convective modes. For the case of cold plasma, and

U* >> k~V02, (24) reduces to

k2 W;e kU(tc. – KB) W;e
2

‘pi
k2 ~*

( )

kld%=o
1+~—- —. —_

k2 @ k2 W*
~~ 1 +J— —

k= Wce dx ‘
(25)

Wwce

which is identical to that of Ganguh’ et al. [1994] and Drake et al, (1994a] in the limit

of uniform plasma (i.e., Kn = ~B = O) and unmagnetized ions. For the case of uniform

,plasma and magnetic fields, (25) yields a solution for the current convective mode,

k: 2Wpe k2 m.

)[ ( )1
~s+ I+@; ,

zi
wz=~(l+gw~ z

1 ~ is the velocity shear, Clearly, there is a possibility of the unstablewhere S s ~ ~z

modes for the case when (kv/kz )S < 0: For simplicity we shall consider the velocity

shear to be positive, i.e., S > 0. Then, for k=/kv < 0, the current convective modes

could become unstable provided the velocity shear satisfies the following inequality,

‘> $(’+%$ (27)

From (27), it is clear that minimum velocity shear, Smi. required to excite the

current convective instability is Smi~ = 2~G~ occurring at a certain critical wave

propagation angle of (kZ/kV)& = -{-. The growth rate of thernodeat the critical

angle of propagation (i.e,, at (kz/kV) = (kz/kv)C, ) would be

where

()
L

7Ylj 4
7 =— ‘~~(s – Srnin)+,me

““=(1+$)1’2
is the lower hybrid frequ&cy.

(28)

For the case of nonuniform plasma, (25) predict unstable roots provided the velocity

shear exceeds a threshold value,

(30)



The minimum value of So

value of wave propagation
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is found to be sth = 2~m~@, and it occurs at a critical

(31)

Further, at the critical angle of propagation, the real frequency, w,, and the growth rate,

~, oft he mode are given by,

Wr =

7’ =

Since St~ ~ S~in , it is clear that

(Kn - ~B) 2

2kUwCi ‘ih’

the density and magnetic field gradients tend to

(32)

stabilize the current convective modes. Further, in the presence of density and magnetic

field gradients, the current connective modes develop real frequencies as seen from (32).

In Figure 1 we have shown some results for the electrostatic current convective

modes in a cold plasma obtained by solving (25) numerically. For the case of uniform

plasma, the current convective instability is purely growing as expected from (26) and

(28) (cf. curves 1 and 2). The instability occurs only for negative values of (kZ/kY).

The growth rate is reduced by a decrease in the value of (k. /kv). For the case of

inhomogeneous plasma, the modes develop a real frequency which increases with an

increase in (Kn ~ KB)/kY), but the growth rates are reduced when (Kn — ~~)/kY)

increases (cf. curves 3,4, and 5). At the same time increasingly higher values of S are

needed to excite the instability when the parameter (K~ – KB )/kv ), increases. Hence the

density and magnetic field gradients have a stabilizing effect on the current convective

instability.



3.2. Special Case: Electromagnetic Modes

Once again restricting to a cold plasma and considering system W2 >> k: V$, k; vi,

W2 << L#e, and neglecting terms * rn~/ml as compared to 1, (23) can be simplified to

where,
W2

[
A=l+~ (l+R)–

RS k.

Ce 1(l+R)~ “

(33)

(34)

When the velocity shear is neglected, and appropriate limits are considered, (33) reduces

to the dispersion relation obtained by Lakhina and Sen [1973] and Winske and Omidi

[1995].

3.2.1. Whistler mode instabilities.

field gradients, i.e., Kn = KB == O, (33) yields

kz z
w2=~ ‘pe

[
% -t

k2 A(l + R) k=

In the absence of density and magnetic

( )1
l+$;(l+R) , (35)

zi

which for R = O goes over to (26). On taking w~,/w~~ >>1, and R >>1 in (35), we get

;
c2k2

[

k2 m.
w= —wc~ Cos 6 1 +

1
~TR+ $’S ,W;e

zi z
(36)

where cos 0 = kz/k is the angle of propagation with respect to the ambient magnetic

field. On neglecting the ion dynamics (i.e., the second term inside the bracket on the

right hand side), and the velocity shear effects ( i.e., putting S = O ), (36) becomes

identical to the dispersion relation for the oblique whistler waves [Stiz, 1992; Drake,

1995]. Equation (36) predicts a whistler mode instability provided the velocity shear

exceeds a certain value,

(:37)‘> ? (l+R$R)
For meR/mi <<1, the minimum value of the whisler mode instability threshold is simply

sum= 2@7Gf- R, and it occurs at the wave propagation angle corresponding to
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(&/&)cr= -~W@ The growth rate, at the critical angle of propagation is given

by

(3s)

For the case of nonuniform plasmas, i.e., K. # 0, tc~ # O, (33) predicts an unstable mode

provided

where

(39)

(40)

For meR/mi <<1, the minimum value of the velocity shear for exciting the whistler mode

instability is simply S* = 2~Gfi, and it occurs at the wave propagation angle

corresponding to (kz/kv)@ = -~=~ At the critical angle of propagation the

real frequency and and the growth rate of the unstable modes are given by

(Kn - tc~)
Ldr =

2kvR ““

()

mi L,

-i
=— 4 4(s – S“)hdc..

me RT
(41)

On comparing SW~ and Y, it is clear that velocity shear threshold for the excitation of

whistler instability is higher in the presence of density and magnetic field gradients.

In Figure 2.we have shown some results for the whistler mode instability in a cold

plasma obtained by solving (33), It is seen that the growth rates are increased by an

increase of velocity shear, S, but are reduced by an increase of R for both the cases of

uniform plasma (cf. curves 1-3) and nonuniform plasma ( cf. curves 4 and 5). This is

in agreement with the analytical solutions given by (3S) and (41) respectively for the

uniform and nonuniform plasma case. The instability is purely growing for the uniform

plasma case, but it has a finite real frequency for the nonuniform case (cf curve 4 ancl 5

in the lower panel). The real frequency also decreases by an increase in R.
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3.2.2. Modified two stream instability in cold plasmas. Once again we

consider the case of a cold plasma, but retain the cross-field electron -ion drift in (23).

Assuming W2 >> k~V~, W2 << w;,, and neglecting terms w m~/mi as compared to 1, (23)

can be reduced to

~ (Kn - K~) W;e 2
‘pi

& w;,
— —. ——

kg ()
kl’ =0,

WWCe (w - kvI&)2 kzwz(l + R) 1 + kZ
(q?)

which generalizes the dispersion relations for the modified two-stream instability [Kmdl

and Liewer, 1971; Lakhina and Sen, 1973] and current convective modes. It should,

however, be noted that here the cross-field electron-ion relative drift, V~O, does not arise

due to the density gradient as the plasma is considered to be cold, rather it is being

maintained by some other external means, e.g., electric field pulses, or monoenergetic

ion fluxes across the magnetic field.

Figure 3 shows some results for the unstable modes obtained by the numerical

solution of (42) for the situation where the current convective modes are stable. The

curves 1 -3 are for the uniform plasma with velocity shear. Both the growth rate and

the real frequency decrease by an increase of R. Comparing the curves 1,4 and 5, we

notice that the effect of the velocity shear is stabilizing for negative value of kz/kY and

destabilizing for positive values of kz/kV, An increase in (K. – ~~)/kv leads to higher

growth rates as well as real frequencies of the excited modes (cf. curve 1, 6 and 7).

4. Numerical Results

4.1. Lower hybrid drift and current convective instabilities

For the case of hot plasma, one has to solve (23) numerically as it is not amenable to

any analytical solution. It is convenient to consider a = kvVti/wCi and pi = S~no7’i/B~,

which represent, respectively, the perpendicular wave number normalized by the ion

gyroradius pi = ~i/wCij and the ratio of ion pressure to the magnetic field pressure,

as independent parameters. Then, one can write R = (mi/m,. )(~i/2az). Further, in



our numerical computations, we calculate the value of magnetic field gradient from the

relation KB = ‘@i(l + Te/Ti)Kn/2.

Figure 4 shows the numerical solution of (23) for the case of electrostatic lower

hybrid drift instability in a hot plasma (with S = 0, @i = 0) where the cross-field

elect ron-ion relative drift, V~o, arises due to the density gradients, The growth rate are

peaked at a certain value of a = kv Vti/wci. The peak-growth rate decreases, the real

frequency increase, and the range of unstable wavenumbers shifts to higher value of a as

the parameter kz/kV increase (cf. curves 1, 2 and 3). However, changing the sign (i.e.,

from negative to positive value) of kz/kv has no effect on these modes (not shown). An

increase in ~./kv leads to larger values for the growth rate and the real frequencies (cf.

curves 2 and 4). Both the growth rate and the real frequency decrease by a decrease in

U,./UC. (cf curves 1 and 5). An increase in Tc/Ti does not affect the peak growth rate

but shifts the unstable wavenumber region to smaller values of a, The real frequencies

of the mode become some what higher by an increase of Te/Ti (cf. curves 5 and 6).

Figure 5 shows the dispersion relation for the case of weakly coupled current

convective and lower hybrid drift instabilities obtained from the numerical solution of

(23). The coupling between the two modes is weak as we consider a small value of the

density gradient ( i.e., ~n/kv = 0.01) for this case, The growth rate tend to increase

with increasing a. However, the grotvrh rates are reduced when either the parameter

~i increases (cf. - curves 1, 2, and 3) or the parameter T./Ti decreases (cf curves 3 and

4). The real frequency of the excited modes gets decreased when the value of Te/Ti is

reduced.

Figure 6 shows the dispersion relation for the coupled lower hybrid and current

convective modes in a hot plasma. For negative value of kZ/kv (cf. curves 1, 2 and 3

for k:/ku =-O. 1), the peak of the growth rate shifts towards lower frecluencies as well as

lower values of a, but becomes larger in magnitude as S increases (see the upper panel).

However, the real frequencies of the excited modes are reduced when S increases (cf.
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curves 1, 2, and 3 in the lower panel). For positive value of kZ/kU (=0.1), the peak

growth rates and the real frequencies are decreased when S is increased (cf. curves 1

and 4), An increase in pi has a stabilizing effect on these modes as seen from curves 1,

.5 and 6.

5. Discussion and Conclusions

When the plasma in the PCBL region can be considered as cold, our analysis

predicts that it can support current convective, whistler, and modified two-stream

instabilities, The minimum velocity shear for the excitation of current convective

instability is S~i~ = 2~m~ occurring at (kz/kv)C, = -G, The modes are

purely growing, and the growth rates increase with an increase in S. On the other

hand, the threshold velocity shear for the purely growing whistler instability is simply

Sw&f = 2~=fi, and it occurs at the wave propagation angle corresponding

to (kz/ku)cr N -~mfi. Density gradients tend to stabilize both the current

convective and the whistler instabilities, at the same time these modes develop real

frequencies. The effect of density gradients on the modified-two stream instability is

destabilizing. The effect of velocity shear on these modes depends on the angle of

propagation, i.e., it is stabilizing for kZ/kv <0 and destabilizing for kz/kv >0.

For the case of hot plasma in the PCBL region, the lower hybrid drift and current

convective instabilities are coupled, For the electrostatic case ( pi = O ) and S = O, the

peak growth rates are reduced by an increase in kZ/kv and a decrease in the value of

/Wpe w~~ . The coupled lower hybrid -current convective modes tend to be stabilized by

an increase in the value of pi. The velocity shear S can have either a destabilizing or a

stabilizing effect on these modes depending on the sign of the parameter k:/kv .

It is interesting to note that the density gradients tend to reduce the growth rate of

the velocity-shear modes (i.e., current convective and whistler instabilities discussed in

sections 3.1 and 3,2). Since the density gradients provide a free energy source, normally
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one would expect the density gradients to increase the growth rate of the instabilities, for

example, modified two-stream and lower hybrid instabilities discussed above. However,

in general, the effect of the density gradients, or any other free energy source, could

be destabilizing for some modes and stabilizing for the others, depending upon the

nature of the excited modes. It has been shown that density gradients tend to stabilize

the Kelvin-Helmholtz instability which is driven by a velocity shear [D ‘Angelo, 196.5;

Rome and Briggs, 1972; Catto et al., 1973; Hubs, 1981]. Both the current convective

and whistler modes, like the Kelvin-Helmholtz modes, are driven by a parallel velocity

shear, and therefore their basic nature is expected to be similar to the latter. Physical

mechanism of the velocity shear instability can be understood as follows (see Appendix

A). In a uniform plasma, a perturbation electric field causes the electron to E x B

drift along Z. In the presence of velocity gradients, the convection of the electron flow

VZbrings regions of different parallel flow to the same magnetic field line [Drake et af.,

1994a]. The resultant bunching of electrons along this magnetic field line produces an

electric field which reinforces the initial perturbation, therkby producing an instability .

The presence of a local density gradient would alter the nature of the bunching process.

It introduces perturbations in the electron density, which in turn produce perturbations

in the parallel electron velocity which are in the opposite direction to the perturbations

in v. produced by the velocity gradients. Thus, the presence of density gradients tend

to debunch the electrons along B and reduce growth of the velocity shear modes.

From Figures 1-6, we note that the typical real frequencies generated by the

instabilities considered here are in the range of 10 to 400 tiCi with the parameter a

lying in the range of 5 ~ a ~ 50. For the PCBL region, typically ~Ci is N 4-5 Hz

[Russell et al., 1995, Tsurutani et af., 1998], Ti * 200 eV, and pi s 0.05. The typical

ion gyroradius would be pi s 5.0 km. Therefore the plasma rest frame frequencies

of the excited modes would be of the order of 40 to 2000 Hz. In the satellite frame

of reference, this frequency range would be broadened due to Doppler shifts and this
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could explain the observed frequency range of the broadband waves, The typical

perpenclicular wavelengths associated with the unstable modes would be~l =27r/ky&

(0.6 -6. O) km. Since thegeneral dispersion relation (23) describes coupled electrostatic

and electromagnetic modes, the waves excited by the instabilities would have a mixture

of electrostatic and electromagnetic modes, thus, naturally explaining an important

characteristic of the PCBL waves.

It is worth pointing out that our model can be applied to explain the generation of

the broadband waves observed in the Jovian boundary layer. Takeing typical parameters

for the Jovian boundary layer as l?O = 5 nT, nO = 0.1 cm-3, T. = 3 x 1050 K, and

Ti = 5 x 1050 K (although there can be considerable variability in all of these parameters)

[Philhp~ d al., 1993; TSUWhZ~i ~i!al., 1997], we have W&=76 mH~, pi = 133 km, pi N

0.06, Te/Ti = 0.6 and wP,/wC, x 20. Assuming that sufficiently strong density, magnetic

fields or current gradients exits inthe Jovian boundary layer, the results of Figures

1-6 would imply excitation ofmodes with frequencies of about 0.5 Hzto30 Hz in the

plasma rest frame with perpendicular wavelengths of 15 to 150 km. This agrees fairly

well with the observed frequency band ( N 10-3 to 102 Hz) of the Jovian boundary layer

waves. Once again the Doppler shifts could broaden the frequency range, thus further

improving the agreement bet wen the prediction of the theory and the observation,

The results shown in Figures 1-6 are valid for the situations where the gradients in

the field-aligned currents are more important than the field-aligned current themselves.

Generally speaking, the field-aligned currents are the source of free energy and they could

lead to the excitation of several electrostatic and electromagnetic modes via streaming

instabilities provided they exceed the relevant instability threshold. The generalized

dispersion relation (23) can deal with the situations where both the field-aligned currents

and current gradient are equally important, However, the interpretation of the modes

becomes much more complicated in the presence of strong field-aligned currents as

several new modes could be excited. We are currently working on this, and the results
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for these situations would be reported elsewhere.

We would like to point out that broadband electrostatic noise (BEN), with

frequencies extending from the local lower hybrid frequency up to the local electron
.

plasma frequency (or even above), has been observed in many regions of the

magnetosphere, including the Earth’s magnetotail [ Scarf et al., 1974; Gurneit et al.,

1976; C’attell e,? al,, 1986; Gurnet,! and Frank, 1977; Matsumoto et al., 1994; Iiojz’ma et

al., 1997], the magnetosheath (Anderson et cd., 1982], and on cusp and auroral field lines

[Gurneti and Frank, 1977; 1978; PotteJette et al., 1990; DAozdoz et’ al., 1991; Ergun

et al,, 1998]. ,The magnetotail BEN emissions are correlated with ion and electrom

beams, whereas auroral region BEN emissions are usually associated with ion conies

and field-aligned electron beams. The waveform observations by the plasma wave

instrument on board the GEOTAIL spacecraft have shown that BEN consists of a series

of bipolar solitary pulses [ikfatsumoio et al., 1994]. The broadness of the BEN frequency

spectra arises from the solitary waveforms. A likely generation mechanism for BEN

proposed by Matsumoto’s group is based on the nonlinear evolution of the electron

beam instabilities leading to the formation of the isolated Bernstein-Greene-Kruskal

(BGK) potential structures which reproduce well the observed electrostatic solitary

waveforms [Omura et al., 1996; Kojima et al,, 1997]. Earlier, DU6OU1OZ et al. (1991]

have proposed a generation mechanism for auroral field line BEN in terms of electron

acoustic soliton~, The mechanisms discussed by Matsumoto et al. [1994] and Dubouioz

et al. [1991] predict negatively charged structures whereas the Polar [Franz et al., 1998]

as well as FAST [R-gun et al., 1998] observations indicate positively charged flowing

potential structures . It is important to note that a potential structure, whether positive

or negative, must inherently be a part of some nonlinear wave where the charges are

trapped, otherwise it would rapidly disrupt due to the repulsive forces of the charges.

Depending on the free energy available, some of the instabilities discussed in this paper

could evolve nonlinearly into solitary waves, for example , whistler-type solitons. If
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this happens it would naturally explain the recent observations on the waveform of the

coherent structures (including the associated magnetic component ,if any) as reportecl

by Polar[A40zer et al., 1998; Franz et al., 1998] and FAST [Ergun et al., 1998] teams.

Appendix A: Physical Mechanism of Velocity Shear Instabilities

We give a simple physical picture of the mechanism by which a velocity shear

S = (dVo/dX)w:l can excite instability and a density gradient ~. = din no/dz can

lead to stabilization. In this simple picture the magnetic filed B. is taken as constant,

the plasma is treated as cold, and only the electrostatic modes are considered. The

basic equilibrium configuration is shown in Figure 7. The magnetic field BO is in the

z direction with the gradient of density, n~ and parallel electron velocity, V: , in the

x direction. We take V: > 0, n~ > 0, and in addition treat them as constant over x

distances of interest, An electrostatic perturbation field E = –V+ = –i(k. z + k, y)g$ is

applied to this system as shown in Figutre 7.

The l.?u component of the perturbed electrostatic field would cause electrons to

E x B drift with speed v= = —i kV@/130along x direction. At any given x = X. region,

low VZelectron from x < SO region would move upwards (towards z = Zo) and high

vz electrons from z > X. region move downwards provided V( > 0. The resulting

variations of VZalong 130 would cause the electrons to bunch and enhance the original

perturbations. The change in electron velocity dv~ll in time dt due to velocity gradient

can be written as dv~l) = -v= ~~dt = i(kY@V(/130)6t.

Now in response to an EZ component of the perturbation electric field, the electrons

would move along B. and try to neutralize the charge. As a result, they will undergo

a change in velocity 6v~2) = (e i kz #/rn,)&, in a time 6t. Thus a change in v: arises

from the above two competing processes. Then, for local instability we must have
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(dv~’)+ dvf)) <0, or

#+1 <o. (Al)
z cc

Since we have taken V; >0, the system is unstable when kz/kV <0, and provided

which is quite similar with the exact condition for the current convective instability

condition given by (27),

The above simple physical picture of the velocity shear instability assumes a

uniform plasma. A local density gradient would alter the nature of the bunching process.

In the presence of a density gradient in the x direction, the E x B drift of electrons

introduces perturbations in the electron density c$ne = —n&v=cft in a time c5t. Then, the

electron density perturbation would be n, = –(ky#J n&/w l?o). Neglecting the ion density

perturbations in the first approximation because of

the Poisson equation yields the dispersion relation

the high frequencies of the waves,

(A3)

Now the electron density perturbations would lead to perturbations

velocity

in parallel electron

(A4)

Then for the local instability, we must satisfy (c$v~lJ+ Jv~2J + 4V$3)) <0, which for the

case of kz/kv < 0 leads to the followin

The effect of density gradient on the

~ condition

[

ks ~2 W2

1
LO.el+fj$y , (A5)

z cc

velocity shear instability is always stabilizing

because JU$3) is in the same direction as dv$). For the case of hot electrons, the relevant

mode frequency is w x kYN~U~~/UC~instead of w given by (A3), III this case also the

density gradient has a stabilizing effect as seen from (A4).



The above physical picture would get modified for the general case of electromagnetic

perturbations due to the Lorentz force effects.
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Figure 1. Variation of normalized growth rate, ~/wCi, (upper panel) and normalized real

frequency, w, /U~i,(lower panel) versus velocity shear S = &~ for the electrostatic (R

= w:e/c2k2 = O) current convective instability forthecase of cold plasma with wP. /~C.

= 10, and V. = O. Thecurves land 2arefor kZ/kV=-O.l and-O. 00.5, respectively, and

the instability is purely growing (i.e,, Wr = O). The curves 3,4 and 5 are for kZ/kY = -0.1

and (~~ – ~B)/kV = 0.05, 0.11, and 0.2, respectively,

Figure 2. Variation of normalized growth rate, ~/wCi, (upper panel) and normalized real

1 ~ for the current convectivefrequency, w, /wCi,(lower panel) versus velocity shear S = ~ ~z

instability for the case of cold plasma with Wpe/wce = 10, V. = 0, and kz/kV = -0.1. The

curves 1, 2 and 3 are for (K~ – K~)/ky =().0, and R = w~~/cQk2= ().0, 1.0, and 5.o,

respectively. The curves 4, and 5 are for (Km— ~B)/kV = 0.1, and R = 1.0, and 5.0,

respectively.

Figure 3. Variation of normalized growth rate, ~/wCi, (upper panel) and normalized .

real frequency, Wr/wti, (lower panel) versus normalized drift ‘velocity ~ for the lower

hybrid instability y for the case of cold plasma with wP./wC. = 10, V. = O, and kz/k& =

-0.1 (except for curve 5). The curve 1, 2, and 3 are for (~. – KB)/kU = 0.0, S = O, and R

= W:e /c2k2 = 0.0, 1.0, and 5, respectively. For the cureves 4 and 5, R = O, (~. – x~)/kU

= 0.0, S = 0.04 and kz/kv = -0.1 and 0.1 respectively. The curves 6, and 7 are for R =

O, S = O and (~. – KB)/kY = 0.1, and 0.2, respectively.
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Figure 4. Variation of normalizedgrowth rate, ~/~Ci7 (upper panel) and normalized

real frequency, wr/wCi,(lower panel) versus normalized wavenumber a = kv Vti /~Ci for the

electrostatic lower hybrid drift instability for the case of hot plasma with S = 0.0, t~ =

0, Di = 0.0, and ~B/kV = 0.0. For the curves 1,2 and 3, UP,/wC, = 10.0, T~/7’i = 1.(),

~n/kU = 0,1, and kz/kv = -0.01, -0.1 and -0.2, respectively . For the curve 4, k,/kY =

-0.1 and tc./kv = 0.2 (other parameters are the same as for the curves 1-3). The curves

5 and 6 are for kz/kv = -0.01, ~n/kY = ().1, WPe/wCe = 1.(), and Te/Ti = 1.0 and ~.o,

respectively. The sign of the parameter kz/kv does not affect the growth rates and the

real frequencies.

Figure 5. Variation of normalized growth rate, ~/wti, (upper panel) and normalized real

frequency, wr/wci, (lower panel) versus normalized wave number number a = kV~i/wCi

for the coupled current convective and lower hybrid drift instability for the case of hot

plasma with S = 0.1, Wpe/LUce = 3.0, Vo=(), ~n/kv = ().()1, and kz/& = -06.10 The curves

1, 2 and 3 are for ?“/Ti = 1.0, and pi = 0.0, 0.1, and 0.2, respectively. The curve 4 is

for ~; = 0.2 and T./Ti = 0.2. The values for the magnetic field gradient used here and

in Figure 6 are obtained from the relation KB = z~i(l + T~/~i)&n/2.

Figure 6. Variation of normalized growth rate, ~/wCi, (upper panel) and normalized real

frequency, Wr/wci, (lower panel) versus normalized wavenumber number a = kV~i/tiCi for

the coupled lower hybrid drift and current convective instability for the case of hot plasma

with wP~/wC~= 10.0, VO=O, and ~~/kY = 0.1. The curves 1, 2, and 3 are for pi = 0.0,

kz/kV = -0.1 and S = &$$$ = 0.0, 0.05, and 0,1, respectively. The curv 4 is for 5’i =

0.0, S = 0.1, and k./kV = 0.1. The curves 4 and 5 are for S = 0.1, kz/ku = -0.1 and ,Si

= 0.05 and 0.2, respectively.
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